Tetrahedron Lettere No.30, pp. 2013-2017, 1964. Pergmon Press Ltd. Printed in Great Britain.

> $3,5$ -ANHYDRO-1,2-O-ISOPROPYLIDENE- α -D-GLUCOSE AND $-\beta$ -L-IDOSE, TWO NEW CARBOHYDRATE OXETANES. J.G. Buchanan and E.M. Oakes Department of Organic Chemistry, The University,

> > Newcastle upon Tyne, 1. (Received 29 May 1964)

3,6-Anhydro-1,2-Q-isopropylidene-a-D-glucose (III) is one of the products of alkali treatment of 5,6-anhydro-1,2-0-isopropylidene- $\alpha-\underline{p}$ -glucose (II).¹ During an attempt to obtain an authentic sample of 3,6-anhydro-1,2- 0 -isopropylidene- β -L-idose (XIV) by similar treatment of the 5,6-anhydro-L-idose derivative (XIII) an unidentified anhydro compound was formed² together with 1,2- Q -isopropylidene- β -L-idose (XVII). The use of thin layer chromatography has enabled us
= to examine the reaction in more detail. Using Kieselgel G as adsorbent and ether as developing solvent the ketal (XVII) and a bimolecular compound (cf. ref.1) were detected at low R_E values together with the 3,6-anhydro-derivative $(XY)^4$ and the new anhydro-compound at higher $R_{\rm m}$ values. When a 10% solution of the 5,6-anhydro-compound (XIII) in N-sodium hydroxide was heated at 100° for 7 minutes the new anhydrocompound was isolated, after chromatography on silica gel, in 10% yield. It is $3,5$ -anhydro-1,2- $\underline{0}$ -isopropylidene- α - \underline{D} -glucose (XVI), m.p. 68-69⁰, $[\alpha]_n + 38.4^{\circ}$ (CHC1₃). The time of heating is critical, because the anhydride is decomposed by alkali (see below). The structure followed from its elementary analysis and chemical behaviour. Acid hydrolysis (N-sulphuric acid; 100[°]) yielded first a reducing sugar of high R_F value

2013

(probably 3,5-anhydro-glucose) which was then converted into idose, identified chromatographically. Under similar conditions 3,5-anhydro-1, 2-O-isopropylidene-a-D-xylose $(XIX)^{5,6}$ was converted into a sugar of high R_p value (3,5-anhydro-xylose) and then into xylose (cf. ref. 7). Ring opening of en epoxide proceeds with inversion at that carbon atom which has been sttacked. 8 The 3,5-anhydro-compound has therefore the D-glucoconfiguration (XVI) end acid hydrolysis has occurred with inversion at $C_{(5)}$; no other hexose (e.g. D-allose, which would have arisen by attack on $C_{(3)}$) was detectable in the acid hydrolysate.

Alkaline hydrolysis (M -sodium hydroxide; 100⁰) of the 3,5-anhydrocompound (XVI) yielded the same mixture of products as that from alkali treatment of the 5,6-epoxide (XIII); $1,2$ -O-isopropylidene- β -L-idose (XVII) and its 3,6-anhydride (XIV) were isolated in crystalline form. Furthermore, 3,5-anhydro-1,2-0-isopropylidene-a-D-xylose (XIX) was hydrolysed to 1,2-O-isopropylidene-a-D-xylofuranose much more slowly under the same conditions, despite the presence of a primary carbon at $C_{f(5)}$. These results can only be explained if the $3,5$ -anhydride (XVI) and the $5,6$ anhydride (XIII) sre interconvertible under alkaline conditions. We believe that this is the first case reported of a reversible "oxide migrstion"9 involving a 3- and s 4-membered oxide ring.

With this possibility in mind, the action of alkali on the 5,6-anhydro-D-gluco-compound (II) has been reinvestigated using thin layer chromatography. Under the conditions of Reichstein and his coworkers¹ the 3,6anhydride (III) was the sole product of high $R_{\overline{F}}$ value, but when the reaction time was reduced a new anhydro compound was observed which gradually disappeared as the reaction proceeded. $3,5$ -Anhydro-1,2-0-isopropylidene- β -**I**-idose (IV), m.p. 49[°], $[\alpha]_n + 53.2^{\circ}$ (CHCl₃) has been isolated after chromatography on silica gel. Acid hydrolysis (N-sulphuric acid; 100°)

 (XIX)

yielded finally glucose as the sole hexose, indicating specific attack at C₍₅₎. An alkaline hydrolysate was examined by thin layer chromatography. The starting material disappeared with formation of the ketal (I) and its 3,6-anhydride (III). This is strong evidence for the interconversion IIE^TIV. another example of oxide migration involving an oxirane and an oxetane.

The 3,5-anhydro-compound (IV) has also been prepared by treatment of the sulphonate (VII) with sodium methoxide in methanol, and subsequent detritylation of the ether (V) . The enol ether (X) , m.p. 82-85[°], is the major prcduct of the reaction and can be removed by crystallisation or by chromatography on silica gel. Whistler and his colleagues¹⁰ have found recently that treatment of the sulphonate (VIII) with methoxide ion gives a 95% yield of the enol ether (XI); the anhydride (VI) could not be detected. Detritylation of the ether (X) gave the syrupy 5-deoxy-1,2-0 $isopropy$ lidene- x -D-xylo-hexodialdo-1,4-furanose (XV) [2,4-dinitrophenylhydrazone, m.p. 184-185⁰, $[\alpha]_n - 17.4^0$ (dioxane)]. Reduction of the sugar (XV) with sodium borohydride afforded 5-deoxy-1,2-0-isopropylidene- α -D-xylokexofuranose (XVIII), m.p. 94^o, identical with an authentic sample 11,12 kindly supplied ω y Dr. E.J. Hedgley. We first encountered the sugar (XV) as a minor product $(6%)$ in the preparation of the 5.6 anhydro-clerivative (XIII) from the sulphonate $(IX)^{13}$ by treatment with methoxide ion. 3 presumably by way of (XII) as an intermediate.

 $\mathcal{L}^{\text{max}}_{\text{max}}$