Tetrahedron Letters No. 30, pp. 2013-2017, 1964. Pergamon Press Ltd. Printed in Great Britain.

3,5-ANHYDRO-1,2-O-ISOPROPYLIDENE- α -D-GLUCOSE AND - β -L-IDOSE, TWO NEW CARBOHYDRATE OXETANES. J.G. Buchanan and E.M. Oakes Department of Organic Chemistry, The University,

Newcastle upon Tyne, 1. (Received 29 May 1964)

3,6-Anhydro-1,2-Q-isopropylidene- α -D-glucose (III) is one of the products of alkali treatment of 5,6-anhydro-1,2-O-isopropylidene- α -<u>D</u>-glucose (II).¹ During an attempt to obtain an authentic sample of 3,6-anhydro-1,2-Q-isopropylidene- β -L-idose (XIV) by similar treatment of the 5,6-anhydro-L-idose derivative (XIII) an unidentified anhydro compound was formed 2 together with 1,2-Q-isopropylidene- β -L-idose (XVII).³ The use of thin layer chromatography has enabled us to examine the reaction in more detail. Using Kieselgel G as adsorbent and ether as developing solvent the ketal (XVII) and a bimolecular compound (cf. ref.1) were detected at low R_p values together with the 3,6-anhydro-derivative (XIV)⁴ and the new anhydro-compound at higher R_{p} values. When a 10% solution of the 5,6-anhydro-compound (XIII) in N-sodium hydroxide was heated at 100° for 7 minutes the new anhydrocompound was isolated, after chromatography on silica gel, in 10% yield. It is 3,5-anhydro-1,2-O-isopropylidene-α-D-glucose (XVI), m.p. 68-69⁰, $[\alpha]_{p}$ + 38.4° (CHCl₂). The time of heating is critical, because the anhydride is decomposed by alkali (see below). The structure followed from its elementary analysis and chemical behaviour. Acid hydrolysis (N-sulphuric acid; 100°) yielded first a reducing sugar of high R_p value

2013

No.30

(probably 3,5-anhydro-glucose) which was then converted into idose, identified chromatographically. Under similar conditions 3,5-anhydro-1, 2-Q-isopropylidene- α -D-xylose (XIX)^{5,6} was converted into a sugar of high R_F value (3,5-anhydro-xylose) and then into xylose (cf. ref. 7). Ring opening of an epoxide proceeds with inversion at that carbon atom which has been sttacked.⁸ The 3,5-anhydro-compound has therefore the D-glucoconfiguration (XVI) and acid hydrolysis has occurred with inversion at $C_{(5)}$; no other hexose (e.g. D-allose, which would have arisen by attack on $C_{(2)}$) was detectable in the acid hydrolysate.

Alkaline hydrolysis (<u>N</u>-sodium hydroxide; 100°) of the 3,5-anhydrocompound (XVI) yielded the same mixture of products as that from alkali treatment of the 5,6-epoxide (XIII); $1,2-\underline{O}$ -isopropylidene- β -<u>L</u>-idose (XVII) and its 3,6-anhydride (XIV) were isolated in crystalline form. Furthermore, 3,5-anhydro-1,2-<u>O</u>-isopropylidene- α -<u>D</u>-xylose (XIX) was hydrolysed to 1,2-<u>O</u>-isopropylidene- α -<u>D</u>-xylofuranose much more slowly under the same conditions, despite the presence of a primary carbon at C₍₅₎. These results can only be explained if the 3,5-anhydride (XVI) and the 5,6anhydride (XIII) are interconvertible under alkaline conditions. We believe that this is the first case reported of a reversible "oxide migration"⁹ involving a 3- and a 4-membered oxide ring.

With this possibility in mind, the action of alkali on the 5,6-anhydro-D-gluco-compound (II) has been reinvestigated using thin layer chromatography. Under the conditions of Reichstein and his coworkers¹ the 3,6anhydride (III) was the sole product of high R_F value, but when the reaction time was reduced a new anhydro compound was observed which gradually disappeared as the reaction proceeded. 3,5-Anhydro-1,2-O-isopropylidene- β -L-idose (IV), m.p. 49°, $[\alpha]_D + 53.2°$ (CHCl₃) has been isolated after chromatography on silica gel. Acid hydrolysis (<u>N</u>-sulphuric acid; 100°)

(XIX)

yielded finally glucose as the sole hexose, indicating specific attack at $C_{(5)}$. An alkaline hydrolysate was examined by thin layer chromatography. The starting material disappeared with formation of the ketal (I) and its 3,6-anhydride (III). This is strong evidence for the interconversion $II \rightleftharpoons IV$, another example of oxide migration involving an oxirane and an oxetane.

The 3,5-anhydro-compound (IV) has also been prepared by treatment of the sulphonate (VII) with sodium methoxide in methanol, and subsequent detritylation of the ether (V). The enol ether (X), m.p. 82-85°, is the major product of the reaction and can be removed by crystallisation or by chromatography on silica gel. Whistler and his colleagues¹⁰ have found recently that treatment of the sulphonate (VIII) with methoxide ion gives a 95% yield of the enol ether (XI); the anhydride (VI) could not be detected. Detritylation of the ether (X) gave the syrupy 5-deoxy-1,2-0 isopropylidene-α-D-xylo-hexodialdo-1,4-furanose (XV) [2,4-dinitrophenylhydrazone, m.p. 184-185[°], $[\alpha]_{n} = 17.4^{°}$ (dioxane)]. Reduction of the sugar (XV) with sodium borohydride afforded 5-deoxy-1,2-0-isopropylidene- α -D-xylohexofuranose (XVIII), m.p. 94^o, identical with an authentic sample^{11,12} kindly supplied _y Dr. E.J. Hedgley. We first encountered the sugar (XV) as a minor product (6%) in the preparation of the 5,6anhydro-derivative (XIII) from the sulphonate (IX)¹³ by treatment with methoxide ion,³ presumably by way of (XII) as an intermediate.

1	E. Seebeck, A. Meyer and T. Reichstein, <u>Helv. Chim. Acta</u> , <u>27</u> ,
	1142 (1944).
2	J.G. Buchanan and J. Conn, Unpublished results.
3	A.S. Meyer and T. Reichstein, <u>Helv. Chim. Acta</u> , 29, 152 (1946).
4	H. Ohle and R. Lichtenstein, Ber., 63, 2905 (1930).
5	P.A. Levene and A.L. Raymond, <u>J. Biol. Chem.</u> , <u>102</u> , 331 (1933).
6	B. Helferich and M. Burgdorf, Tetrahedron, 3, 274 (1958)
7	J.P. Horwitz, J. Chua, J.A. Urbanski and M. Noel, J. Org. Chem.,
	<u>28,</u> 942 (1963).
8	S. Peat, Advances in Carbohydrate Chem., 2, 37 (1946).
9	J.G. Buchanan and J.C.P. Schwarz, J. Chem. Soc., 4770 (1962) and
5	references cited therein.
10	R.E. Gramera, T.R. Ingle and R.L. Whistler, <u>J. Org. Chem.</u> , <u>29</u> ,
	878 (1964).
11	M.L. Wolfrom, K. Matsuda, F. Komitsky, Jr. and T.E. Whiteley,
	J. Org. Chem., 28, 3551 (1963).
12	E.J. Hedgley, O. Mérész, W.G. Overend and R. Rennie, Chem. and
	Ind., 938, (1960).
13	This compound was prepared independently by Gramera et al. ¹⁰